If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying ln(x + 1) + 1 = ln(x2 + -10x) Reorder the terms: ln(1 + x) + 1 = ln(x2 + -10x) (1 * ln + x * ln) + 1 = ln(x2 + -10x) (1ln + lnx) + 1 = ln(x2 + -10x) Reorder the terms: 1 + 1ln + lnx = ln(x2 + -10x) Reorder the terms: 1 + 1ln + lnx = ln(-10x + x2) 1 + 1ln + lnx = (-10x * ln + x2 * ln) 1 + 1ln + lnx = (-10lnx + lnx2) Solving 1 + 1ln + lnx = -10lnx + lnx2 Solving for variable 'l'. Move all terms containing l to the left, all other terms to the right. Add '10lnx' to each side of the equation. 1 + 1ln + lnx + 10lnx = -10lnx + 10lnx + lnx2 Combine like terms: lnx + 10lnx = 11lnx 1 + 1ln + 11lnx = -10lnx + 10lnx + lnx2 Combine like terms: -10lnx + 10lnx = 0 1 + 1ln + 11lnx = 0 + lnx2 1 + 1ln + 11lnx = lnx2 Add '-1lnx2' to each side of the equation. 1 + 1ln + 11lnx + -1lnx2 = lnx2 + -1lnx2 Combine like terms: lnx2 + -1lnx2 = 0 1 + 1ln + 11lnx + -1lnx2 = 0 Add '-1' to each side of the equation. 1 + 1ln + 11lnx + -1 + -1lnx2 = 0 + -1 Reorder the terms: 1 + -1 + 1ln + 11lnx + -1lnx2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 1ln + 11lnx + -1lnx2 = 0 + -1 1ln + 11lnx + -1lnx2 = 0 + -1 Combine like terms: 0 + -1 = -1 1ln + 11lnx + -1lnx2 = -1 Reorder the terms: 1 + 1ln + 11lnx + -1lnx2 = -1 + 1 Combine like terms: -1 + 1 = 0 1 + 1ln + 11lnx + -1lnx2 = 0 The solution to this equation could not be determined.
| 14x+12x=22 | | 39=15+(2s+6) | | (x^2-1)(x+2)=0 | | lg(x+1)+1=lg(x^2-10x) | | lg(x+1)+1=lg(x-10x) | | 8x+7=14x-53 | | .5n+2.5n=18 | | 16x-10y=12 | | 20x^3+72x^2+72x+16=0 | | 6b-5=19 | | 7x^2-8x-150=0 | | (h-4)(h-4)(h-4)= | | 4x+14-12=x | | 3d=10-2d | | 2a-5=a | | 11x-2x^2=0 | | (x-1)(x-3)(x+2)(x+6)=72x^2 | | 2x^2-3xy+2y^2=4 | | 14-7v=-(v-8) | | 4(2x+3)=5x+21 | | 9x^2-26x-16=0 | | 2(n-3)=6w | | 7x^2+41x-56=0 | | 7x^2+3x-13=42-38x | | 5x^2+7x-17=25-22x | | 15-7x+2(3x-4)=8-x | | -2x=-19(x-1)-19 | | 2x^2=3x+35 | | .6666666667x+5-1.333333333x-4=1 | | -5(10-2x)+6(x-1)=4(4x-14) | | 10x-15+3(x-2)=13x+400 | | 11a+9=7 |